103 research outputs found

    Role of noncoding RNAs in the regulation of P-TEFb availability and enzymatic activity

    Get PDF
    P-TEFb is a transcriptional factor that speci)cally regulates the elongation step of RNA polymerase II-dependent transcription and its activity strictly required for Human Immunode)ciency Virus (HIV) infection and during cardiac di*erentiation. P-TEFb role has emerged as a crucial regulator of transcription elongation and its activity found )nely tuned in vivo at transcriptional level as well as posttranscriptionally by dynamic association with di*erent multisubunit molecular particles. Both physiological and pathological cellular signals rapidly converge on P-TEFb regulation by modifying expression and activity of the complex to allow cells to properly respond to di*erent stimuli. In this review we will give a panoramic view on P-TEFb regulation by noncoding RNAs in both physiological and pathological conditions

    The histone LSD1 demethylase in stemness and cancer transcription programs.

    Get PDF
    Abstract DNA and histone chromatin modifying enzymes play a crucial role in chromatin remodeling in several biological processes. Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is a relevant player in the regulation of a broad spectrum of biological processes including development, cellular differentiation, embryonic pluripotency and cancer. Here, we review recent insights on the role of LSD1 activity in chromatin regulatory complexes, its functional role in the epigenetic changes during embryonic development, in the establishment and maintenance of stemness and during cancer progression

    Sp3 Is a Bifunctional Transcription Regulator with Modular Independent Activation and Repression Domains

    Get PDF
    Sp3 is a member of the Sp family of transcription factors and binds to DNA with affinity and specificity comparable to that of Sp1. We demonstrate that Sp3 is a bifunctional transcription factor that can both activate and repress transcription. Gene fusion experiments in mammalian cells demonstrate that the Sp3 activation potential is distributed over an extensive glutamine-rich N-terminal region, whereas the repressor activity has been mapped in a 72-amino acid region located at the 5' of the zinc finger DNA-binding domain. We demonstrated that the repression activity is strictly dependent on the context of the DNA-binding sites bound by Sp3. We found that Sp3 represses transcription of promoters bearing multiple GAL4 DNA-binding sites, whereas it activates isogenic reporters containing a single GAL4-binding site. Transfection experiments in Drosophila cells that lack endogenous Sp activity demonstrated that Sp3 does not possess an active repression domain that can function in insect cells, rather it is a weak transcriptional activator of the c-myc promoter. Our results strongly suggest that Sp3 is a dual-function regulator whose activity is dependent upon both the promoter and the cellular context

    Expanding the Role of the Histone Lysine-Specific Demethylase LSD1 in Cancer

    Get PDF
    Studies of alterations in histone methylation in cancer have led to the identification of histone methyltransferases and demethylases as novel targets for therapy. Lysine-specific demethylase 1 (LSD1, also known as KDM1A), demethylates H3K4me1/2, or H3K9me1/2 in a context-dependent manner. In addition to the well-studied role of LSD1 in the epigenetic regulation of histone methylation changes, LSD1 regulates the methylation dynamic of several non-histone proteins and participates in the assembly of different long noncoding RNA (lncRNA_ complexes. LSD1 is highly expressed in various cancers, playing a pivotal role in different cancer-related processes. Here, we summarized recent findings on the role of LSD1 in the regulation of different biological processes in cancer cells through dynamic methylation of non-histone proteins and physical association with dedicated lncRNA

    Recruitment of human TBP selectively activates RNA polymerase II TATA-dependent promoters.

    Get PDF
    An increasing body of evidence suggests that eukaryotic activators stimulate polymerase II transcription by facilitating the assembly of the functional basal machinery at the promoter. Here we describe experiments that provide added support for the idea that recruitment of TATA-binding protein (TBP) is a rate-limiting step for transcription activation in mammalian cells. We found that, in human cell lines, recruitment of TBP to a promoter, as a GAL4-TBP fusion protein, can provide a substantial activation of transcription. Activation mediated by the hTBP, tethered to promoter DNA, is strictly dependent upon the presence of a functional TATA element, and it directs faithful transcription initiation. Interestingly, GAL4-hTBP activation was not observed from initiator (Inr) -dependent TATA-less promoters. These results suggest that TBP binding to DNA is not a rate-limiting step for the initial stages of TFIID recruitment to initiator-dependent TATA-less promoters. Finally, we provide evidence that synergy between GAL4-hTBP and defined transcription domains is restricted to activators, such as VP16 and Tat, which are likely to function at steps subsequent to the TFIID recruitment. These findings strengthen the idea that recruitment of TBP represents an important mechanism of activation of TATA-dependent promoters, and on the other hand, they suggest that TBP-DNA interactions are largely dispensable for specific transcription of initiator dependent TATA-less promoters

    Knowledge Generation with Rule Induction in Cancer Omics

    Get PDF
    The explosion of omics data availability in cancer research has boosted the knowledge of the molecular basis of cancer, although the strategies for its definitive resolution are still not well established. The complexity of cancer biology, given by the high heterogeneity of cancer cells, leads to the development of pharmacoresistance for many patients, hampering the efficacy of therapeutic approaches. Machine learning techniques have been implemented to extract knowledge from cancer omics data in order to address fundamental issues in cancer research, as well as the classification of clinically relevant sub-groups of patients and for the identification of biomarkers for disease risk and prognosis. Rule induction algorithms are a group of pattern discovery approaches that represents discovered relationships in the form of human readable associative rules. The application of such techniques to the modern plethora of collected cancer omics data can effectively boost our understanding of cancer-related mechanisms. In fact, the capability of these methods to extract a huge amount of human readable knowledge will eventually help to uncover unknown relationships between molecular attributes and the malignant phenotype. In this review, we describe applications and strategies for the usage of rule induction approaches in cancer omics data analysis. In particular, we explore the canonical applications and the future challenges and opportunities posed by multi-omics integration problems.Peer reviewe

    Towards a comprehensive view of 8-oxo-7,8-dihydro-2'-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability

    Get PDF
    8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a major product of DNA oxidation, is a pre-mutagenic lesion which is prone to mispair, if left unrepaired, with 2'-deoxyadenosine during DNA replication. While unrepaired or incompletely repaired 8-oxodG has classically been associated with genome instability and cancer, it has recently been reported to have a role in the epigenetic regulation of gene expression. Despite the growing collection of genome-wide 8-oxodG mapping studies that have been used to provide new insight on the functional nature of 8-oxodG within the genome, a comprehensive view that brings together the epigenetic and the mutagenic nature of the 8-oxodG is still lacking. To help address this gap, this review aims to provide (i) a description of the state-of-the-art knowledge on both the mutagenic and epigenetic roles of 8-oxodG; (ii) putative molecular models through which the 8-oxodG can cause genome instability; (iii) a possible molecular model on how 8-oxodG, acting as an epigenetic signal, could cause the translocations and deletions which are associated with cancer

    A novel workflow for the qualitative analysis of DNA methylation data

    Get PDF
    DNA methylation is an epigenetic modification that plays a pivotal role in major biological mechanisms, such as gene regulation, genomic imprinting, and genome stability. Different combinations of methylated cytosines for a given DNA locus generate different epialleles and alterations of these latter have been associated with several pathological conditions. Existing computational methods and statistical tests relevant to DNA methylation analysis are mostly based on the comparison of average CpG sites methylation levels and they often neglect non-CG methylation. Here, we present EpiStatProfiler, an R package that allows the analysis of CpG and non-CpG based epialleles starting from bisulfite sequencing data through a collection of dedicated extraction functions and statistical tests. EpiStatProfiler is provided with a set of useful auxiliary features, such as customizable genomic ranges, strand-specific epialleles analysis, locus annotation and gene set enrichment analysis. We showcase the package functionalities on two public datasets by identifying putative relevant loci in mice harboring the Huntington's disease-causing Htt gene mutation and in Ctcf +/- mice compared to their wild-type counterparts. To our knowledge, EpiStatProfiler is the first package providing functionalities dedicated to the analysis of epialleles composition derived from any kind of bisulfite sequencing experiment

    Inhibition of Tat activity by the HEXIM1 protein

    Get PDF
    BACKGROUND: The positive transcription elongation factor b (P-TEFb) composed by CDK9/CyclinT1 subunits is a dedicated co-factor of HIV transcriptional transactivator Tat protein. Transcription driven by the long terminal repeat (LTR) of HIV involves formation of a quaternary complex between P-TEFb, Tat and the TAR element. This recruitment is necessary to enhance the processivity of RNA Pol II from the HIV-1 5' LTR promoter. The activity of P-TEFb is regulated in vivo and in vitro by the HEXIM1/7SK snRNA ribonucleic-protein complex. RESULTS: Here we report that Tat transactivation is effectively inhibited by co-expression of HEXIM1 or its paralog HEXIM2. HEXIM1 expression specifically represses transcription mediated by the direct activation of P-TEFb through artificial recruitment of GAL4-CycT1. Using appropriate HEXIM1 mutants we determined that effective Tat-inhibition entails the 7SK snRNA basic recognition motif as well as the C-terminus region required for interaction with cyclin T1. Enhanced expression of HEXIM1 protein modestly affects P-TEFb activity, suggesting that HEXIM1-mediated repression of Tat activity is not due to a global inhibition of cellular transcription. CONCLUSION: These results point to a pivotal role of P-TEFb for Tat's optimal transcription activity and suggest that cellular proteins that regulate P-TEFb activity might exert profound effects on Tat function in vivo
    • …
    corecore